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Abstract
The evolution of both quantum and classical ensembles may be described via
the probability density P on configuration space, its canonical conjugate S, and
an ensemble Hamiltonian H̃ [P, S]. For quantum ensembles this evolution is,
of course, equivalent to the Schrödinger equation for the wavefunction, which
is linear. However, quite simple constraints on the canonical fields P and S
correspond to nonlinear constraints on the wavefunction. Such constraints
act to prevent certain superpositions of wavefunctions from being realized,
leading to superselection-type rules. Examples leading to superselection for
energy, spin direction and ‘classicality’ are given. The canonical formulation
of the equations of motion, in terms of a probability density and its conjugate,
provides a universal language for describing classical and quantum ensembles
on both continuous and discrete configuration spaces, and is briefly reviewed
in an appendix.

PACS number: 03.65.Ta

1. Introduction

The Schrödinger equation for a quantum system is linear, implying that the superposition
of any two solutions is also a solution. However, some combinations of states have never
been observed, including coherent superpositions of integer and half-integer spins, electric
charges and Schrödinger’s cat (wanted dead and alive). Possible explanations for why such
superpositions are not observed fall into two logical categories:

(i) measurement superselection rules: such superpositions may be allowed, but physical
limitations on measurement prevent their observation;

(ii) state superselection rules: such superpositions are not physically allowed.

Each of these categories may of course be further subdivided into ‘in principle’ and ‘in practice’
subcategories.
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A well known example of a measurement superselection rule is charge superselection in
quantum field theory. In particular, integration of the operator relation ∇ · Ê = 4πρ̂, relating
the electric field and charge density, implies that the total charge operator Q̂ = ∫

d3xρ̂ can be
expressed as an integral over a surface containing any given finite region, and hence that all
quasilocal field observables (those vanishing outside such regions) must commute with Q̂ [1].
Thus, the assumption that all physical observables are quasilocal implies that no measurement
can distinguish relative phases of superpositions of different charge eigenstates, e.g., between
|q1〉+|q2〉 and |q1〉−|q2〉. Note that this is not a state superselection rule, as such superpositions
are not in themselves forbidden.

Measurement superselection rules also include environment-induced superselection,
forbidding the observation of coherent superpositions of classical apparatus states (and
cats), due to decoherence arising from interaction between the apparatus and its (in
practice unobservable) environment [2–4]. It has been suggested that environment-induced
superselection rules may also provide an alternative basis for explaining charge superselection
[5].

State superselection rules are stronger than (and imply) measurement superselection rules
(one cannot observe what does not exist). They have typically been obtained by appealing to
group symmetry arguments. For example, assuming invariance of the wavefunction (up to a
phase) under rotations of 2π , the nontrivial nature of projective representations of the rotation
group implies that superpositions of states of integer and half-integer spin are not permitted
[6–8]. Note that requiring a similar invariance for the wavefunctional of a charged field,
under global phase shifts of the field, implies that superpositions of states of different total
charge are not permitted. However, as noted by Weinberg (his italics): “it may or may not be
possible to prepare physical systems in arbitrary superpositions of states, but one cannot settle
the question by reference to symmetry principles, because whatever one thinks the symmetry
group of nature may be, there is always another group whose consequences are identical
except for the absence of superselection rules” [9] (see also [5]). This emphasizes the fact
that, in the end, superselection rules are incorporated into quantum theory via assumptions
rather than as strict consequences.

The aim of this paper is to point out an alternative mechanism for state superselection
rules: nonlinear constraints on the wavefunction. Consideration of such constraints is perfectly
natural—and in principle unavoidable—when one places physical significance on the existence
of an action principle for quantum ensembles. In particular, any Hamiltonian formulation of
such an action principle requires two canonically conjugate fields on configuration space (e.g.,
ψ and ψ∗ [7, 10], Re ψ and Im ψ [11], or |ψ | and arg ψ [12–14]). Specifying any constraints
on these fields is then merely part of the general theory of Hamiltonian systems (that underlies,
for example, classical mechanics, quantization on curved spaces and standard discussions of
quantum gauge symmetries [15]). Note that it is not convincing to argue that any such
constraints must in fact be linear in ψ , on the grounds that the set of physical wavefunctions
should be closed under superposition, as this argument amounts to simply assuming that there
are no state superselection rules.

There is another fundamental justification for considering constraints that are nonlinear
with respect to the wavefunction. In particular, as will be reviewed in section 2, the evolution
of both classical and quantum ensembles may be described in terms of an action principle
for two canonically conjugate fields P and S, where P denotes the probability density on
the configuration space. In this common formalism, the primary differences between the
classical and quantum cases are due to different ensemble Hamiltonians. In particular, there
is no difference in the treatment of quantum and classical constraints: these are expressed in
precisely the same way, in terms of the canonical fields P and S. Hence, since for classical
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ensembles one cannot even define, much less restrict to, the notion of constraints linear in
some ‘wavefunction’, it is rather difficult to justify any such a priori restriction for quantum
ensembles.

It turns out that quite simple constraints on P and S can lead to interesting state
superselection rules for quantum ensembles. Moreover, such superselection rules can be
qualitatively rather different from those which have been previously considered. For example,
they can act to not only restrict quantum ensembles to members of a set of orthogonal
subspaces in Hilbert space, but to further permit only certain types of superpositions within
these subspaces. Indeed, they can even act to restrict quantum ensembles to members of a set
of non-orthogonal states. It should be emphasized that in all cases the evolution of the system
is still linear, being described by the usual Schrödinger equation.

In the following section, the Hamiltonian formulation of the equations of motion for
classical and quantum ensembles of particles is briefly described. Differences between
canonical constraints on such ensembles, and Dirac-type constraints on the wavefunction,
are discussed in section 3. Examples of constraints leading to energy, spin direction
and Gaussian superselection rules are given in section 4, and conclusions are presented in
section 5.

The Hamiltonian formulation of the description of ensembles on configuration space is of
some interest in its own right, being quite universal in nature. It is applicable to both continuous
and discrete configuration spaces, to both classical and quantum ensembles and even to
non-orthogonal representations of quantum ensembles (e.g., coherent-state representations).
Some general features of this formulation are therefore collected in an appendix.

2. Canonical equations of motion

The existence of an action principle for the evolution of a statistical ensemble, in a continuous
configuration space, implies equations of motion of the Hamiltonian form (see the appendix)

∂P

∂t
= δH̃

δS
,

∂S

∂t
= −δH̃

δP
. (1)

Here P(x, t) denotes the probability density on the configuration space, S(x, t) is the quantity
canonically conjugate to P and H̃ [P, S] is the ensemble Hamiltonian. The notation δ/δP, δ/δS

denotes functional derivatives with respect to P and S, respectively (see the appendix).
For example, for a classical ensemble of particles of mass m, acted on by an external

potential V (x), define the ensemble Hamiltonian

H̃ c[P, S] :=
∫

dx P

[ |∇S|2
2m

+ V (x)

]
. (2)

The equations of motion then follow via equations (1) and (A7) of the appendix as

∂P

∂t
+ ∇ · (P∇S/m) = 0,

∂S

∂t
+

|∇S|2
2m

+ V = 0. (3)

The first of these is a continuity equation, ensuring conservation of probability, while the
second is the classical Hamilton–Jacobi equation [16]. Note that if ∇S is interpreted as the
momentum of a particle at position x, then the classical ensemble Hamiltonian H̃ c corresponds
to the average ensemble energy. However, such an interpretation will not be relied upon here.

As a second example, for a quantum ensemble of such particles define the ensemble
Hamiltonian

H̃ q[P, S] := H̃ c[P, S] +
h̄2

4

∫
dx P

|∇ log P |2
2m

. (4)
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The corresponding equations of motion for P and S follow as

∂P

∂t
+ ∇ · (P∇S/m) = 0,

∂S

∂t
+

|∇S|2
2m

+ V + Q = 0, (5)

where Q := −(h̄2/2m)P −1/2∇2P 1/2 is the so-called ‘quantum potential’ [17]. It is well
known that if one defines ψ := P 1/2 eiS/h̄, these equations of motion are equivalent to the
Schrödinger equation

ih̄
∂ψ

∂t
= −h̄2

2m
∇2ψ + V ψ. (6)

It may be checked that the quantum ensemble Hamiltonian H̃ q is equal to the average quantum
ensemble energy

∫
dx ψ∗(−h̄2∇2/2m + V )ψ (see also the appendix). Note also that H̃ q

reduces to H̃ c in the classical limit h̄ → 0.
These examples indicate that both classical and quantum ensembles may be described via

two canonically conjugate fields P and S on configuration space, with differences in evolution
corresponding to differences in the respective ensemble Hamiltonians H̃ c and H̃ q . Note from
equation (4) that these ensemble Hamiltonians differ by a nonclassical kinetic energy term,
inversely proportional to mass m. Some general properties of the canonical formulation for
ensembles on configuration space (whether classical or quantum, continuous or discrete) are
discussed in the appendix.

3. Dirac constraints versus canonical constraints

The canonical formulation of the equations of motion provides a common basis for discussing
both classical and quantum ensembles, and in particular for treating classical and quantum
constraints on an equal footing. More significantly, for the purposes of this paper, the canonical
formulation in fact leads to a more general treatment of quantum constraints than does the
standard approach introduced by Dirac [18].

In particular, the standard approach relies on replacing classical constraints of the form
C(x, p) = 0 by operator constraints on the wavefunction, of the form [9, 15, 18]

C

(
x,

h̄

i
∇

)
ψ = 0. (7)

Consistency of these constraints with the equations of motion and with each other then leads
to a number of secondary constraints of a similar form. What is important to note here
is that in this approach all constraints are linear with respect to the wavefunction. Hence
any superposition of two wavefunctions, each satisfying the constraints, will also satisfy the
constraints, i.e., the standard approach cannot lead to superselection rules.

In contrast, in the canonical formulation one is dealing, in both the quantum and the
classical cases, with a Hamiltonian system for two conjugate fields, P and S. Hence, any
primary constraints are expressed in precisely the same manner

K[P, S] = 0, (8)

in both cases [13]. Any fundamental classical/quantum differences in this regard arise because
the corresponding ensembles have different ensemble Hamiltonians, so that any secondary
constraints, following from consistency with the equations of motion, will in general be
different [15]. It may be assumed that the functional forms of the classical and quantum
primary constraints are identical, i.e., Kq ≡ Kc (this is the simplest possible correspondence).
Note, however, that physical consistency only requires identity to lowest order in h̄.
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Now, every Dirac-type constraint on the wavefunction, of the form of equation (7), clearly
corresponds to two canonical constraints on the fields P and S, of the form of equation (8)
(obtained by substituting ψ = P 1/2 eiS/h̄ in equation (7) and taking real and imaginary parts).
For example, the Dirac constraint (x × ∇)ψ = 0 (rotational symmetry of ψ) maps to the
corresponding canonical constraints x × ∇P = 0, x × ∇S = 0 (rotational symmetry of P and
S, respectively). More general symmetries of ψ also map to two corresponding symmetries
for P and S (e.g., invariance of ψ under rotation by 2π , up to a phase factor, maps to the
invariance of P, and to the invariance of S up to an additive constant).

However, the set of possible canonical constraints is much larger than those corresponding
to Dirac-type constraints, and in particular includes constraints on P and S that correspond to
nonlinear constraints on ψ (examples are given in the next section). Such nonlinear constraints
are not invariant under superposition, and hence lead directly to state superselection rules for
quantum ensembles.

As remarked in the introduction, the possibility of classical constraints which are not
linear for the particular combination of canonical fields ψ = P 1/2 eiS/h̄ is not at all surprising
(and rather desirable!). Yet the canonical formalism applies equally well to both classical and
quantum ensembles. Imposing a restriction to linear constraints, for quantum ensembles only,
is thus rather difficult to justify on physical grounds, and the full set of possible canonical
constraints therefore deserves serious consideration.

4. Superselection via canonical constraints

It has been shown that the set of canonical constraints for configuration-space ensembles
includes those corresponding to nonlinear constraints on the wavefunction. Thus, although
solutions of the Schrödinger equation (6) are closed under arbitrary superpositions, the
presence of such constraints in general acts to rule out a number of such superpositions,
leading directly to superselection-type rules.

Several examples are given here, related to superselection of energy, spin direction and
‘classicality’. Note that these examples are intended only to be indicative of the manner in
which nonlinear constraints can lead to state superselection rules. Further investigation is
needed to determine whether well-motivated constraints exist that lead to superselection rules
of physical interest.

4.1. Energy superselection

Consider first the rather simple canonical constraint

J = P∇S = 0. (9)

This constraint is local, invariant under S → S + constant, and may be physically interpreted
as the requirement that the ensemble momentum density vanishes everywhere (see also the
appendix). Note that for quantum ensembles it can be re-expressed as Im ψ∗∇ψ = 0, which
clearly cannot be put in the linear Dirac form of equation (7).

To investigate this constraint for a classical ensemble of particles, note that consistency
with the equations of motion requires ∂J/∂t = 0 [9, 15, 18]. Equations (3) and (9) then yield
the secondary constraint

0 = ∂(P∇S)/∂t = (∂P/∂t)∇S + P(∂(∇S)/∂t)

= −[∇ · (P∇S)]∇S − P∇[|∇S|2/(2m) + V ]

= −P∇V. (10)
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Hence the classical force, −∇V , vanishes over the support of the ensemble. Note in particular
that if the potential energy has a single minimum, then the constraint requires the ensemble to
be concentrated solely at this minimum, i.e., the ensemble must occupy the classical ground
state.

In contrast, for a quantum ensemble, equation (9) requires that ∇S vanishes on the support
of the wavefunction, and hence that S has no spatial dependence for P �= 0. Secondary
constraints arising from consistency with the equations of motion can be determined similarly
to the classical case above (one finds that the ‘quantum’ force, −∇(V + Q), must vanish over
the ensemble, where Q is the quantum potential in equation (5)). However, it is simpler to
directly substitute the ansatz S(x, t) = −f (t) into the Schrödinger equation (6) and use the
continuity equation (5), to obtain the secondary constraints

ḟ P 1/2 =
[−h̄2

2m
∇2 + V

]
P 1/2, ∂P/∂t = 0

respectively. Differentiating the first of these with respect to time and applying the second
implies that ḟ = E = constant, and hence these constraints are equivalent to the time-
independent Schrödinger equation

−h̄2

2m
∇2ψ + V ψ = Eψ. (11)

Thus, the quantum ensemble is required to be in an energy eigenstate (but not necessarily in
the quantum ground state).

It is seen that in both the classical and quantum cases, the primary constraint in equation (9)
leads to the requirement that the ensemble is stationary. In the quantum case this immediately
yields a state superselection rule: superpositions of states of different energy are forbidden.
Thus, this constraint provides a very simple example of how canonical constraints can lead to
superselection-type rules for quantum ensembles.

Note that for degenerate Hamiltonians the above example is even more stringent than
usual superselection rules. In particular, if ψ1 and ψ2 are two real-valued energy eigenstates
corresponding to the same energy eigenvalue E, then it follows from equation (9) that only
superpositions of the form

eiφ (aψ1 + bψ2) ,

are permitted, where a and b are real. Thus, the physical states are not only restricted to
members of a set of orthogonal subspaces of the Hilbert space; they are further restricted,
up to an arbitrary phase factor, to real superpositions of (real-valued) members of these
subspaces. The constraint thus effectively lowers the degeneracy of the Hamiltonian (it would
be interesting to investigate the thermodynamic implications).

4.2. Spin-direction superselection

As an example involving a discrete configuration space, an ensemble of two-level systems
will be considered. The configuration space is therefore labelled by two values, j = 1, 2, and
the canonical equations of motion have the form (see the appendix)

Ṗj = ∂H̃

∂Sj

, Ṡj = − ∂H̃

∂Pj

(12)

for some ensemble Hamiltonian H̃ (P1, P2, S1, S2).
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For the particular example of a quantum ensemble of spin-half particles, in an external
magnetic field B, the ensemble Hamiltonian has the form (see the appendix)

H̃ (P1, P2, S1, S2) = µ〈σ · B〉
= µ(P1 − P2)Bz + 2µ

√
P1P2

[
Bx cos

S1 − S2

h̄
− By sin

S1 − S2

h̄

]
,

where µ is the magnetic moment; σ denotes the Pauli sigma matrices; and Bx, By and Bz denote
the components of B relative to some set of orthogonal directions x, y and z. The canonical
coordinates are related to the usual Bloch sphere representation by P1 = cos2 θ/2, S1−S2 = φ,
and it is well known that evolution corresponds to rotation of the Bloch sphere about an axis
parallel to the magnetic field B. Such rotations thus correspond to a particular group of
canonical transformations of the canonical coordinates P1, P2, S1 and S2.

Consider now the constraint that

S1 − S2 = 0 (13)

for some choice of x, y and z. This constraint is analogous to equation (9), and is similarly
invariant under the transformation Sj → Sj + C (and hence consistent with the conservation
of probability). It restricts the ensemble to lie on a great circle on the Bloch sphere (passing
through the z-axis), and thus geometrically corresponds to a rather natural geodesic constraint
in the Bloch representation. Note, however, that it cannot be expressed as a Dirac-type
constraint on the wavefunction.

The secondary constraints arising from the requirement of compatibility of equation (13)
with the equations of motion follow directly from geometrical considerations: rotation of the
Bloch sphere about B will leave the ensemble on some great circle if and only if (i) the axis
of rotation is orthogonal to the great circle, or (ii) the ensemble lies on the intersection of the
great circle with the axis of rotation B.

The constraint thus leads to a state superselection rule for spin direction: the ensemble
either corresponds to one of the two eigenstates of σ · B, or to an equally-weighted-modulus
superposition of these eigenstates. Note that this superselection rule is consistent with
measurement of spin via a Stern–Gerlach apparatus, which leaves the spin direction either
parallel or antiparallel to the magnetic field of the apparatus.

4.3. Gaussian superselection

The ensemble Hamiltonians H̃ c and H̃ q , for classical and quantum ensembles of particles
respectively, differ by a functional of the position probability density P, as indicated in
equation (4). This functional vanishes in the formal limit h̄ → 0, as one might expect.
However, in the real world one cannot take such a limit—h̄ is a fixed and fundamental
constant—and hence any physical description of a classical limit for quantum ensembles must
take a different approach [19].

Here one very simple criterion for quantum ensembles to behave classically is considered:
the difference between the quantum and classical ensemble Hamiltonians should be as small
as possible. It follows from equation (4) that this criterion is equivalent to the constraint

F =
∫

dxP |∇ log P |2 = minimum. (14)

Note that this cannot be expressed as a Dirac-type constraint on the wavefunction.
The quantity F in equation (14) is just the (classical) Fisher information of P [20]. It is

strictly positive, and satisfies the isoperimetric inequality

F � (2πen) e−2HX/n,
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where HX denotes the entropy of the ensemble and n is the dimension of the configuration
space, with equality holding if and only if P is Gaussian [20]. It follows immediately, under
the additional (rather weak) assumption that the entropy of P is finite, that the classicality
constraint in equation (14) is automatically satisfied if P can be chosen to be Gaussian, i.e., of
the form

P(x, t) = (2π e)−n/2(det Kt)
1/2 e−(1/2)(x−at )

T Kt (x−at ) (15)

for some (possibly time-dependent) non-singular matrix Kt and mean at . Note that the
finite entropy assumption holds, for example, whenever the configuration-space variances
Var(x1), Var(x2), . . . , are finite.

Substitution of equation (15) into equations (5) leads in a straightforward manner to the
secondary constraints that each of S and V are at most quadratic in x. Hence, for quadratic
Hamiltonians (e.g., the harmonic oscillator, a particle in a constant magnetic or gravitational
field and free particles), the classicality constraint (14) requires the wavefunction to be a
complex Gaussian in x.

The classicality constraint thus leads to a rather strong state superselection rule for systems
with quadratic Hamiltonians (and finite position entropy): the wavefunction is restricted to
a set of non-orthogonal states. The connection between such ‘classical’ wavefunctions and
classical trajectories has been recently reviewed in [21].

5. Conclusions

State superselection rules and nonlinear constraints on the wavefunction are inextricably
linked in a formal sense. For example, any superselection rule of the form that physical
wavefunctions are restricted to a set of orthogonal subspaces, corresponding to an orthogonal
set of projections {Êj } (and hence to eigenstates of a Hermitian operator Â = ∑

j aj Êj ), is
formally equivalent to the nonlinear constraint∑

j

〈ψ |Ej |ψ〉2 = 1 (16)

on the wavefunction. It follows that if state superselection rules have physical content, then
so must nonlinear constraints, and vice versa.

It has been demonstrated, in the context of configuration-space ensembles satisfying an
action principle, that the consideration of nonlinear constraints is in principle unavoidable.
Moreover, in this context both quantum and classical constraints can be discussed on an
equal footing, generalizing the standard approach based on mapping classical phase space
constraints to linear operator constraints.

The examples of constraints leading to superselection of energy, spin direction and
‘classicality’ in section 4 show that quite simple nonlinear constraints on the wavefunction
can lead to interesting state superselection rules. However, further investigation is needed
to determine whether well-motivated constraints exist (i.e., not of the ad hoc form of
equation (16) above) that lead to superselection rules for quantities such as the total charge and
spin discussed in the introduction. It would also be of interest to investigate what conditions
need to be imposed, if any, to ensure the consistency of such superselection rules with physical
measurements.

The canonical formulation of the equations of motion emphasizes the fact that an action
principle for quantum ensembles requires two fields. These are usually taken as ψ and ψ∗

[7], but of course can also be taken as P and S. Interpretations of quantum mechanics which
neglect this fact (i.e., which neglect to provide a physical interpretation for both ψ and ψ∗, or
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both P and S) correspond to according the quantum equations of motion primary significance
over the action principle from which they follow. This is opposite to the usual point of view
taken in classical dynamics [16].

It is perhaps worth pointing out that, since the wavefunction can be recovered from
tomographic measurements (up to a phase factor), the fields P and S can similarly be recovered
(the latter up to an additive constant). Indeed, weak measurements of momentum on an
ensemble of particles, post-selected by strong measurements of position, allow one to recover
both P(x) and ∇S for both the classical and the quantum cases [22] (where the latter can be
integrated to give S up to a constant).

Finally, note that the canonical formulation of the equations of motion only applies to pure
states in the quantum case. It would be of interest, for thermodynamic and other purposes, to
consider properties of statistical mixtures of configuration-space ensembles (corresponding to
density operators in the quantum case).

Acknowledgments
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Appendix. Configuration-space ensembles

To introduce configuration-space ensembles at a fundamental level, suppose that (i) the
configuration of a physical system can only be specified imprecisely, requiring it to be
described by an ensemble on the configuration space and (ii) there is an action principle
for the motion of the ensemble.

The first assumption implies that the configuration of the physical system is formally
described by a probability density P on configuration space. The second assumption implies the
existence of some conjugate function S on configuration space, and an ‘ensemble’ Hamiltonian
H̃ [P, S, t], such that the equations of motion are generated by Hamilton’s action principle
δα = 0, with [16]

α =
∫

dt

[
H̃ +

∫
P

∂S

∂t

]
=

∫
dt[H̃ + 〈∂S/∂t〉]. (A1)

The inner integral in the first equality above is over the configuration space, and is replaced
by summation over any discrete parts of configuration space. The physical interpretation
of S will be discussed further below. For continuous configuration spaces it is typically an
energy–momentum potential.

It is perhaps simplest to first consider discrete configuration spaces (corresponding,
e.g., to the description of classical dice throws and quantum spins). The probability of
configuration j is then Pj , with conjugate quantity Sj , and the equations of motion follow from
equation (A1) as

Ṗj = ∂H̃/∂Sj , Ṡj = −∂H̃/∂Pj . (A2)

Only Hamiltonians which conserve probability are of interest, and hence, to first order in ε, it
is required that

0 = ε
∑

j

Ṗj = ε
∑

j

∂H̃

∂Sj

= H̃ (P, S + ε) − H̃ (P, S).

Thus, H̃ is invariant under the addition of a constant to the components of S.
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It follows for discrete configuration spaces that the ensemble Hamiltonian must be of the
form

H̃ = F(P,M), (A3)

where M denotes the antisymmetric matrix with components Mjk = Sj − Sk . The equation
of motion for Pj therefore reduces to the familiar rate equation form [23]

Ṗj =
∑

k

(
∂F

∂Mjk

− ∂F

∂Mkj

)
=

∑
k

(TjkPk − TkjPj ), (A4)

with transition rates

Tjk := P −1
k

∂F

∂Mjk

(A5)

(with Tjk := 0 for Pk = 0). Noting that probability must remain positive under evolution
implies further that

∂H̃

∂Sj

∣∣∣∣∣∣Pj =0 =
∑
k(�=j)

PkTjk

∣∣∣∣∣∣
Pj =0

� 0. (A6)

For constant transition rates this reduces to Tjk � 0 for j �= k.
For a continuous configuration space, indexed by some (possibly multi-dimensional)

parameter x, the ensemble Hamiltonian becomes a functional, H̃ [P, S], and the equations of
motion follow from equation (A1) as

∂P

∂t
= δH̃

δS
,

∂S

∂t
= −δH̃

δP
.

Here δF/δf denotes the functional derivative of functional F [f ] with respect to function f ,
where for the special case that F [f ] = ∫

dx R(f,∇f, x) one has [16]

δF/δf = ∂R/∂f − ∇ · [∂R/∂(∇f )]. (A7)

The conservation and positivity of probability places restrictions on the ensemble
Hamiltonian analogous to the discrete case above. In particular, conservation of probability
implies that H̃ is invariant under S(x) → S(x) + constant, and so can only depend on ∇S

and higher derivatives. The equation of motion for P can therefore always be expressed in the
form of a continuity equation

∂P/∂t + ∇ · J = 0,

for some current J (one formally has J = δH̃/δ(∇S)).
Examples of ensemble Hamiltonians for classical and quantum particles have been given

in equations (2) and (4), respectively (with current J = P∇S/m in both cases). The form of
the classical Hamiltonian H̃ c is perhaps the simplest possible scalar functional of ∇S, and is
well known (dating back to the 19th century) from the theory of ideal fluids [24]. The form
of the quantum Hamiltonian H̃ q may be derived from the corresponding classical form via an
‘exact uncertainty’ principle, both for particles [12] and for bosonic fields [13].

It is straightforward to show that all quantum systems may be formulated in terms
of configuration-space ensembles, where the ‘configuration space’ may be chosen as
corresponding to the outcome space of any complete measurement on the system. In particular,
let Ĥ be the Hamiltonian operator for a quantum system described by state |ψ〉, and let {|a〉}
denote any basis set satisfying the completeness property∫

da|a〉〈a| = 1̂
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(with integration replaced by summation over any discrete ranges of a). Such a basis set
corresponds to the outcomes associated with the measurement of some observable A (e.g.,
position, momentum, optical phase, energy, spin, etc), where |〈a|ψ〉|2 is the probability
density associated with measurement outcome a. Note it is not required that the basis set be
orthonormal.

Now define P(a) and S(a) by the polar decomposition 〈a|ψ〉 = P 1/2 eiS/h̄, and the
associated ensemble Hamiltonian H̃A by

H̃A[P, S] = 〈ψ |Ĥ |ψ〉 =
∫

da da′[P(a)P (a′)]1/2〈a|Ĥ |a′〉 ei[S(a′)−S(a)]/h̄. (A8)

It follows that the action in equation (A1) can be rewritten as

α =
∫

dt

[
〈ψ |Ĥ |ψ〉 +

1

2
ih̄

∫
da

(
∂〈a|ψ〉∗

∂t
〈a|ψ〉 − 〈a|ψ〉∗ ∂〈a|ψ〉

∂t

)]
,

and hence (by variation with respect to 〈a|ψ〉 and its conjugate) that the equations of motion
for P and S are identical to the Schrödinger equation (and its conjugate) in the a representation.

The natural form of the transition rates for a discrete quantum observable A follows from
equations (A5) and (A8) as

Tjk = h̄−1(Pj/Pk)
1/2 Im{〈aj |Ĥ |ak〉 e−i(Sj −Sk)/h̄}. (A9)

The positivity condition (A6) automatically follows (with equality) from the Hermiticity of
Ĥ . An alternative ‘geometric’ approach to the configuration-space ensemble formulation, for
the case of discrete quantum ensembles, has been given recently by Mehrafarin [14].

It is of interest to give an explicit example of the quantum equations of motion for the case
of a non-orthogonal basis set (see also [23]). In particular, consider a single-mode bosonic
field with Hamiltonian operator Ĥ = h̄ωN̂ . The phase observable � then corresponds to the
basis set {|φ〉} with number-state expansion [25, 26]

|φ〉 := (2π)−1/2
∞∑

n=0

einφ |n〉.

It follows that 〈φ|N̂ |ψ〉 = i(d/dφ)〈φ|ψ〉, and hence that the corresponding ensemble
Hamiltonian is given by

H̃�[P, S] = h̄ω〈ψ |N̂ |ψ〉 = −ω

∫ 2π

0
dφ P

∂S

∂φ
.

The associated equations of motion follow as

∂P/∂t = ω(∂P/∂φ), ∂S/∂t = ω(∂S/∂φ).

These may be solved directly, or by noting that H̃� is proportional to the ensemble momentum
associated with phase translations (cf equation (A12) below), to give P(φ, t) = P0(φ + ωt)

and S(φ, t) = S0(φ + ωt).
Finally, to establish the physical interpretation of the conjugate quantity S, recall from

the above discussion that the conservation of probability implies invariance of H̃ under
the transformation S → S + C. The equations of motion are also invariant under this
transformation. Hence only derivatives and relative changes in S are expected to have direct
physical significance.

For example, the form of the ensemble action in equation (A1) suggests that ∂S/∂t is a
local energy associated with the ensemble. This can be made more precise, both for continuous
and discrete configuration spaces, in the case that the ensemble Hamiltonian is homogeneous
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with respect to P, i.e.,

H̃ [λP, S] = λrH̃ [P, S] (A10)

for all λ > 0 and some constant r. In particular, differentiating the homogeneity condition
with respect to λ and putting λ = 1 yields the identity

H̃ = r−1
∫

dx P
δH̃

δP
= −r−1

∫
dx P

∂S

∂t
= −r−1〈∂S/∂t〉 (A11)

(integration is replaced by summation for discrete configuration spaces). Thus, identifying
H̃ with the ensemble energy (which is certainly justified for time-independent Hamiltonians),
it follows that −r−1P(∂S/∂t) may be interpreted as a local energy density. This is further
supported by the invariance of the equations of motion under H̃ → H̃ + ε(

∫
dxP )r , S →

S − εrt . Note that the homogeneity property (A10) in fact holds for all cases considered in
this paper, with r = 1.

Further, for continuous configuration spaces, consider an infinitesimal translation in
configuration space. The change in the ensemble Hamiltonian is then, to first order,

H̃ [P(x + δx), S(x + δx)] − H̃ [P(x), S(x)] = δx ·
∫

dx

(
δH̃

δP
∇P +

δH̃

δS
∇S

)

= δx · ∂

∂t

∫
dxP∇S,

where the last equality follows using the equations of motion and integration by parts. It
follows that the linear momentum of the ensemble may be identified as [16]

� =
∫

dxP∇S = 〈∇S〉, (A12)

and hence that P∇S may be interpreted as a local momentum density associated with the
ensemble.
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